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DEFINITION 
 Autoparallelization is the translation of a sequential program by a compiler into a parallel form that 
computes the same final values as the original program. For some authors, autoparallelization means 
only translation for multiprocessors. However, this definition is more general and includes translation 
for instruction level, vector, or any other form of parallelism.  
 
 
DISCUSSION 
 
 
Introduction 
 
The compilers of most parallel machines are autoparallelizers and this has been the case since the 
earliest parallel supercomputers, the Illiac IV and the TI ASC, were introduced in the 1960s. Today, 
there are autoparallelizers for vector processors, VLIW processors, processors with multimedia 
extensions, and multiprocessors including multicores.  
 
Autoparallelization is for productivity. Autoparallelizers, when they succeed, enable the programming 
of parallel machines with conventional languages such as Fortran or C. In this programming 
paradigm, code is not complicated by parallel constructs and the obfuscation typical of manual tuning. 
Inserting explicit parallel constructs and tuning is not only time-consuming but also produces non-
portable, machine-dependent code. For example, codes written for multiprocessors and those for 
SIMD machines have different syntax and organization. On the other hand, with the support of 
autoparallelization, conventional codes could be portable across machine classes.   
 
Another benefit for productivity of programming with conventional languages is that explicit parallelism 
introduces opportunities for program defects that do not arise in sequential programming. With 
autoparallelization, the code has sequential semantics. There is no possibility of deadlock and 
programs are determinate. The downside is that it is not possible to implement asynchronous 
algorithms, although this is not a significant limitation for the vast majority of applications.  
 
 



Requirements for autoparallelization  
 
A parallelizing compiler must analyze the program to detect implicit parallelism and opportunities for 
restructuring transformations and then applies a sequence of transformations.  
 
Detection of implicit parallelism can be accomplished by (1) computing the dependences to determine 
where the sequential order of the source program can be relaxed and (2) analyzing the semantics of 
code segments to enable the selection of alternative parallel algorithms.  
 
The transformation process is restricted by the information provided by this analysis and is guided by 
heuristics supported by execution time predictions or program profiling. 
 
 
Dependence Analysis 
 
The dependence relation is a partial order between operations in the program that is computed by 
analyzing variable and array element accesses. Executing the program following this partial order 
guarantees that the program will produce the same output as the original code. For example, in  
 

for (i=0; i < n; i++) {a[i] += 1;} 
for (j=0; j < n; j++) {b[j] = a[j]*2;} 

 
corresponding iterations of the first and the second loop must be executed in the specified order. 
However, these pairs of iterations do not interact with other pairs and therefore do not have to execute 
in the original order to produce the intended result. Only corresponding iterations of these two loops 
are ordered. By determining what orders must be enforced, the dependence analysis tell us what 
reordering are valid and what can be done in parallel: two operations that are not related by the partial 
order resulting from the dependence analysis can be reordered or executed in parallel with each 
other.  
 
Dependence analysis can be done statically, by a compiler, or dynamically, during program execution. 
Static analysis is discussed next and dynamic analysis in the next section under the heading of 
“runtime resolution. “ 
 
How close static dependence analysis comes to the minimum number of ordered pairs required for 
correctness depends on the information available at compile time and the algorithms used for the 
analysis. The loops above are examples of loops that can be analyzed statically with total accuracy 
because (1) all the information needed for an accurate analysis is available statically and (2) the 
subscript expressions are simple, so that most analysis algorithms can analyze them accurately. 
Accuracy is tremendously important because when the set of dependences computed by a test is not 
accurate, spurious dependences must be assumed and this may preclude valid transformations 
including conversion into parallel form. 
 
There are numerous algorithms for dependence analysis that have been developed through the 
years. They typically trade off accuracy for speed of analysis. For example, some fast tests do not 
make use of information about the values of the loop indices, while others require them. Ignoring the 
loop limits works well in some cases. The loops above are an example of this situation. The value of n 
in these loops is not required to do an accurate analysis.  However, in other cases, knowledge of the 
loop limits is needed. Consider the loop 

 
for (i=10; i < 15; i++ ) {a[i]+=a[i-8];} 

 



The loop limits, 10 and 14, are necessary for to determine that no ordering needs to be enforced 
between loop iterations since, for these values, the iterations do not interact with each other. A test 
that ignores the loop limits will report that (some) iterations in this loop must be executed in order.  
 
Some of the most popular dependence tests require for accuracy that the subscript expressions be 
affine expression of the loop indices and the value of the coefficients and the constant be known at 
compile time. For example, a test that requires knowledge of the numerical values of coefficients 
would have to assume that iterations of the loop 
 

if (m >0) { 
for (i=0; i < n; i+=2){ 

a[m*i]+=a[m*i+1]; 
} 

           } 
 
must be executed in order, while a test with symbolic capabilities would be able to determine that the 
iterations do not have to be executed in any particular order to obtain correct results. Table 1 presents 
the main characteristics of a few dependence tests. 
 
When the needed information is not available at compile time or the analysis algorithm is inaccurate, 
the decision can be postponed to execution time (see ”runtime resolution” below). For example, the 
loop  
 

for (i=0; i <n; i++) {a[i+k]+=a[i];} 
 
can be transformed into an array operation as long as k is negative, but the compiler may not know 
that this is the case if k happens to be a function of the input to the program or if the value 
propagation analysis conducted by the compiler cannot decide that k is negative. A similar situation 
arises in the loop 
 

for (i=0; i < n; i++) {a[m[i]]+=a[i];} 
 

Where m[i] must be ≤  i or ≥  n and all the m[i]’s be different for a transformation into vector operation 
to be valid, but this will only be known to the compiler if it can propagate array values and these 
values are available in the source code. Otherwise, dependences must be assumed or the analysis 
postponed to execution time. 
 
 
Semantic Analysis 

 
Semantic analysis identifies operators or code sequences that have a parallel implementation. A good 
example is the analysis of array operations. For example, in the Fortran statement 
 

a(1:n) = sin(a(2:n+1)) 
 

the n evaluations of sin can proceed in parallel since their parameters do not depend on each other. 
Although array operations like this can be interpreted as parallel operations, most Fortran 90 
compilers at the time of the writing of this entry do not parallelize directly array operations, but instead 
translate them into loops which are analyzed by later passes for parallelization. So, in effect, they rely 
on semantic analysis. 
 
The compiler can also apply semantic analysis to sequence of statements with the help of a database 
of patterns. For example,  



 
for (i=0; i <n; i++) {s+=a[i];} 

 
cannot be parallelized by relying exclusively on dependence analysis, because this analysis will only 
state the obvious: that each iteration requires the result of the previous one (the values of sum) to 
proceed. However, accumulations like this can be parallelized, assuming that + is associative, and are 
frequently found in real programs. Therefore this pattern is a natural candidate for inclusion in this 
database.  
 
Other frequently found patterns include: finding the minimum or maximum of an array, and linear 
recurrences such as  

x(i)=a(i)*x(i-1)+b(i). 
 
Some compilers have been known to recognize more complex patterns such a matrix-matrix 
multiplication. 
 
Once the compiler knows the type of operation, it can choose to generate a parallel version by 
replacing the code sequence with a parallel version of the operation.  
 
 
Program transformations 
 
Program transformations are used to  
 

1. reduce the number of dependences,  
2. generate code for runtime resolution, that is, code that at runtime decide whether to execute in 

parallel,  
3. schedule operations to improve locality or parallelism 

 
Transformations for reducing the number of dependences 

 
This class of transformations aims at reducing the number of ordered pairs to improve parallelism and 
enable reordering. Induction variable substitution and privatization are two of the most important 
examples in this class. Induction variables are those that assume values that form an arithmetic 
sequence. Their computation creates a linear order that must be enforced. In addition, using induction 
variables in subscripts hinders the dependence analysis of other computations. For example, the loop 
 

for (i=0; i <n; i++) {j+=2; a[j]=a[j]*2;} 
 

cannot be parallelized in this form since j+=2 must be executed in order. Furthermore, dependence 
analysis cannot know that each iteration of the loop accesses a different element unless it knows that 
j takes a different values in each iteration. Fortunately, in this example, as in most cases, the 
induction variable can be eliminated to increase parallelism and improve accuracy of analysis. Thus, 
here j may be represented in terms of the loop index and forward substituted 
 

for (i=0; i<n; i++) {a[j+2*i+1]=a[j+2*i+1]*2;} 
 

The effect of this transformation is that the chain of dependences resulting from the j++ statement 
goes away with the statement. Also, the removal of the increment makes j a loop invariant and this 
enables an accurate dependence analysis at compile time. 
 
The identification of induction variables was originally developed for strength reduction, which 
replaces operations with less expensive ones. For example, in strength reduction, multiplication is 



replaced by additions. For parallelism, the replacement goes in the opposite direction. For example, 
additions are replaced by multiplications as shown in the last example. Induction variable identification 
relies on conventional compiler data-flow analysis. 
 
Privatization can be applied when the same variable is always used to carry values from one 
statement to another within the one iteration of the loop. For example, in   
 

for (i=0; i<n; i++) {a=b[i]*2;c[i]= a*c[i]} 
 

the use of a single variable, a, for the whole loop demands that the iterations be executed in order to 
guarantee correct results. Clearly, a should not be reassigned until its value has been obtained by the 
second statement of the loop body.  The privatization transformation simply makes a private to the 
loop iteration and thus eliminates a reason to execute the iterations in order.  
 
An alternative to privatization is expansion. This transformation converts the scalar into an array and 
has the same effect on the dependence as privatization. That is, it eliminates some of the relations in 
the partial order. For the previous loop, this would be the result: 
 

for (i=0;i<n;i++){a1[i]=b[i]*2;c[i]=a1[i]*c[i]};a=a1[n-1]; 
 
Privatization is applied when generating code for multiprocessors, and expansion is necessary for 
vectorization. The main difficulty with vectorization is the increase in memory requirements. While 
privatization increases the memory requirements proportionally to the number of processors, 
expansion does so proportionally to the number of iterations, a number that is typically much higher. 
However, expansion can be applied together with a transformation called stripmining to reduce the 
memory requirement. 
 
Privatization and expansion require analysis to determine that the variable being privatized or 
expanded is never used to pass information across iterations of the loop. This analysis, can also be 
done using conventional data flow analysis compiler techniques. 
 
 
Transformations for runtime resolution 

 
In its simplest form, runtime resolution transformations generate if statements to select between a 
parallel or serial version of the code. For example, 
 

do i=m,n 
a(i+k)=a(i)*2 

end do 
 
as discussed above, can be vectorized if k ≤  0. The compiler may then generate a two-version code  
 

if (k<=0) then 
a(k+m:k+n)+=a[m:n];  

else       
do i=m,n 
a(i+k)=a[i]*2 
end do 

end if 
 
Two-version code can be also be used for profitability. Thus, if the loop contains an assignment 
statement that accesses memory through pointers in the right and left hand side, like the loop 



 
for (i=0; i <n; i++) {*(a+i)=*(b+i)+2;} 

 
the if statement should check that address a is either less than address b or greater than address 
(b+n-1).  
 
More complex runtime resolution would be needed for loops like 
 

for (i=0; i <n; i++) {a[m[i]]+=a[i];} 
 

where the m[i]’s must be ≤ i and all distinct for vectorization to be possible, or all distinct for 
transformation into a parallel loop.  In 
 

for (i=0; i <n; i++) {a[m[i]]+=a[q[i]];} 
 

the m[i]’s and q[i]’s must be such that m[i] ≤  q[i] and the m[i]’s all distinct for vectorization  or m[i] ≠  
q[j] whenever i ≠ j for parallelization.  Two-version loops can be generated also in this case, but the if 
condition is somewhat more complex as it must analyze a collection of addresses.  In this last case, 
the technique is called inspector-executor.  Another approach to runtime resolution is speculation, 
which attempts to execute in parallel and optimistically expects that there will be no conflicts between 
the different components executing in parallel. During the execution of the speculative parallel code or 
at the end, the memory references are checked to make sure that the parallel execution was correct. 
If it was not, the execution is undone and the components executed at a later time either in the right 
order or again speculatively, in parallel. 
 
Run time resolution is also used to check for profitability, that parallel execution will make execution 
faster. For example, if the number of iterations of a parallel loop is not known at compile time, runtime 
resolution can be used to decide whether to execute a loop in parallel as a function of the number of 
iterations. Also, runtime resolution can be used to guarantee that vector operations are only executed 
if the operands are or can be properly aligned in memory when this is required for performance. For 
example, SSE vector operations perform well when the operands are aligned on a double word 
boundary.   
 
 
Scheduling transformations 

 
An important class contains those transformations that schedule the execution of program operations 
or partition these operations into groups. To enforce the order the compiler typically uses the barriers 
implicit in array operations or multiprocessor synchronization instructions. A simple partitioning 
transformation is stripmining. It partitions the iterations of a loop into blocks by augmenting the 
increment of the loop index and adding an inner loop as follows 
 

for (i=0; i <n; i++) {a[i]=a[i]+1;} 
↓ 

 
for (i=0; i < (n/q)*q; i+=q) for(j=i; j< i+q, j++) {a[j]=a[j]+1;} 

for (i=(n/q)*q; i< n, i++) {a[i]=a[i]+1;} 
 
Stripmining is useful, for example, to enhance locality and reduce the amount of memory required by 
the program. In particular, it can be used to reduce the memory consumed by expansion.  Thus, 
Stripmining the loop 
 

for (i=0; i<n; i++) {a=b[i]*2;c[i]= a*c[i]} 



 
into blocks of size q and expanding a into an array of the size of the block would accomplish the 
desired result. If the goal is vectorization and the size of the vector register is q, this transformation 
will not reduce the amount of parallelism. 
 
Another type of loop partitioning transformation is that developed for a class of autoparallelizing 
compilers targeting distributed memory operations. These compilers, including High-Performance 
Fortran and Vienna Fortran, flourished in the 1990s but are no longer in use. The goal of partitioning 
was to organize loop iterations groups so that each group could be schedule in the node containing 
the data to be manipulated.  
 
An important sequencing transformation is loop interchange, which changes the order of execution by 
exchanging loop headers. This transformation can be useful to reduce the overhead when compiling 
of multiprocessors and to enhance memory behavior by reducing the number of cache misses. For 
example, the loop 
 

for (i=0; i<n; i++) for(j=0; j<n, j++) {a[i][j]=a[i-1][j]+1;} 
 
can be correctly transformed by loop interchange into 
 

for (j=0; j<n; j++) for(i=0; i<n, i++) {a[i][j]=a[i-1][j]+1;} 
 
The outer loop of the original nest cannot be executed in parallel. If nothing else is done, the only 
option of the compiler targeting a multiprocessor is to transform the inner loop into parallel form and 
while this could lead to speedups, the result would suffer of the parallel loop initiation overhead once 
per iteration of the outer loop. Exchanging the loop headers makes the iteration of the outer loop 
independent so that now the outer loop can be executed in parallel and the overhead is only paid 
once per execution of the whole loop.  Furthermore, the resulting loop has a better locality since the 
array is traverse in the order it is stored so that the elements of the array in a cache line are accessed 
in consecutive order, improving in this way spatial locality. 
 
A third example of sequencing transformation is instruction level parallelization. Consider, for 
example, a VLIW machine with a fixed point and floating point unit. The sequence 
 

r1=r2+r3 
r4=r4+r5 
f1=f1+f2 
f3=f4+f5 

 
contains two fixed point operations (those operating on the r registers) and two floating point 
operations. Exchanging the second and the third operation is necessary to enable the creation of two 
(VLIW) instructions each making use of both computational units.  
 
In some cases, the partitioning and sequencing of the operations is not completely determined at 
compile-time. For example the sum reduction  
 

for (i=0; i <n; i++) {s+=a[i];} 
 
once identifies as such by semantic analysis, may be transformed into a form in which subsets of 
iterations are executed by different threads and the elements of a are accumulated into different 
variables, one per thread of execution. These variables are then added to obtain the final sum. The 
number of these threads can be left undefined until execution time. In OpenMP notation, this can be 
represented as follows: 
 



#pragma omp parallel  
 {float sp=0; 
#pragma omp for  
  for (i=0; i <n; i++) { 
      sp+=a[i];} 
#pragma omp single 
  {s+=sp;}   
 } 

or, more simply,  
 

#pragma omp parallel for reduction (+: sum) 
  for (i=0; i <n; i++) { 
      sp+=a[i];} 

 
It should be pointed out that in this example, it has been assumed that floating point addition is 
associative, but because of the finite precision of machines, it is not. In some cases it is correct to do 
this transformation, even if the result obtained is not exactly the same as that of the original program. 
However, this is not always the case and transformations like this require authorization from the 
programmer. 
 
Table 2 contains a list of important transformations not discussed above. 
 
 
 
Autoparallelization today 
 
Most of today’s compilers that target parallel machines are autoparallelizers.  They can generate code 
for multiprocessors and vector code. Although autoparallelization techniques have become the norm, 
the few empirical studies that exist as well as anecdotal evidence indicate that these compilers often 
fail to generate high quality parallel code. There are two reasons for this. First, sometimes the 
compiler fails to find parallelism due to limitations of its dependence/semantic analysis or 
transformation modules. In other cases, it is unable to generate good quality code because of 
limitations in its profitability analysis. That is, the compiler incorrectly assumes that transforming into 
parallel form would slow the program down. 
 
To circumvent these limitations, compilers accept directives from programmer to help the analysis or 
guide the transformation and code generation process. A few vectorization directives for the Intel C++ 
compiler and IBM XLC compiler are shown in Table 3. These directives enable the programmer to 
control some of the transformations applied by a compiler. The programmer can also influence the 
result by modifying the program into a form that can be recognized by the compiler. 
 
Despite their limitations, autoparallelizers today contribute to productivity by  

i. Saving labor. As mentioned, manual intervention in the form of directives or rewriting is 
typically necessary, but programmers can often rely on the autoparallelizing compiler for some 
sections of code and in some cases all of it. 

ii. Portability. Sequential code complemented with directives is portable across classes of 
machines with the support of compilers. Portability is after all one of the purposes of compilers 
in general and autoparallelization brings this capability to the parallel realm. 

iii. As a training mechanism. Programmers can learn about what can and cannot be parallelized 
by interacting with an autoparallelizer. Thus, the compiler report to the programmer is not only 
useful for manual intervention, but also for learning.  

 



Future directions 
 
Autoparallelization has only been partially successful. As previously mentioned, in many cases 
today’s compilers fail to recognize the existence of parallelism or, having recognized the parallelism, 
incorrectly assume that transforming into parallel form is not profitable. Although autoparallelization is 
still useful and effective when guided by user directives, there is clearly much room for improvement. 
Research in the area has decreased notably in the recent past, but it is likely that there will be more 
work in the area due to the renewed interest in parallelism that multicores have initiated. Two 
promising lines of future studies are 
 

i. Empirical evaluation of compilers to improve parallelism detection, code generation, compiler 
feedback, and parallelization directives. Evaluating compilers using real applications is 
necessary to make advances in autoparallelization of conventional languages. Although there 
has been some work done in this area, much more needs to be done. This type of work is 
labor intensive since the best and perhaps the only way to do it is for an expert programmer to 
compare what the compiler does with the best code that the programmer can produce. There 
is the concern that this process will only lead to an endless sequence of different situations. 
However, there is no clear evidence that this will be the case. Furthermore, there are some 
indications that code patterns repeat across applications [4]. These costs and risks are 
worthwhile given the importance of the topic and the potential for an immense impact on 
productivity. 

ii. Study programming notations and their impact on autoparallelization. Higher level notations, 
such as those used for array operations, tend to facilitate the task of a compiler while at the 
same time improving productivity. Language-compiler co-design is an important and promising 
direction not only for autoparallelization but for compiler optimization in general. 

 
 
RELATED ENTRIES 
Dependences 
Dependence analysis 
Banerjee's test 
GCD test 
Omega test 
Semantic independence 
ILP test 
Trace Scheduling 
Modulo scheduling 
Software pipelining 
Vectorization: The Allen and Kennedy Algorithm 
Basic block parallelization 
Loop nest parallelization 
The Wolfe and Lam algorithm 
Unimodular transforamtions 
Scheduling algorithms 
Parallel code generation 
Run time parallelization 
Thread-level Speculation 
Loop level Speculation 
High Performance Fortran 
Vectorization 
Autovectorization 
Instruction–level parallelization 



BIBLIOGRAPHIC NOTES AND FURTHER READING 
 
As mentioned in the introduction, work on autoparallelization started in the 1960s with the introduction 
of Illiac IV and the Texas Instrument Advanced Scientific Computer (ASC). The Paralyzer, and 
autoparallelizer for IlliacIV developed by Massachusetts Computer Associates, is discussed in [10]. 
This is the earliest description of a commercial autoparallelizer in the literature. Since then, there have 
been numerous papers and books describing commercial autoparallelizers. For example, [11] 
describes an IBM vectorizer of the 1980s, [3] discusses Intel’s vectorizer for their multimedia 
extension, and [13] describes the IBM XLC compiler autoparallelization features.  
 
Many of the autoparallelization techniques were developed at Universities. Pioneering work was done 
by David Kuck and his students at the University of Illinois [6,7]. The field has benefited from the 
contributions of numerous researchers. The contributions of Ken Kennedy and his co-workers [1] at 
Rice University have been particularly influential. 
 
There have been only a few papers evaluating the effectiveness of autoparallelizers. In [7] different 
vectorizing compilers are compared in terms of a collection of snippets and in [3] the effectiveness of 
parallelizing compilers is discussed using the Perfect Benchmarks. 
 
More information on autoparallelization, can be found in the related entries or in books devoted to this 
subject [2, 5, 12, 14]. Reference [5] also contains a discussion of compiler techniques for High-
Performance Fortran. 
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Test name # of loop 

indices in 
subscript 

 

Subscript 
expressions 

must be affine? 

Uses 
loop bounds? 

Ref. 

ZIV  0  (constant) Y N/A [5] 
SIV  1 Y Y [5] 
GCD Any Y N [2] 
Banerjee Any Y Y [2] 
Access Region Any N Y [9] 
 

Table 1. Characteristics of a few dependence tests 
 
 
 
 
 
 
 

Name Description Example of use 
 

Alignment 
Reorganizes computation so that 
values produced in one iteration are 
consumed by the same iteration.  

Reduce synchronization 
costs 

Distribution Partitions a loop into multiple loops.  Separates sequential from 
parallel parts. 

Fusion Merges two loops Reduce parallel loop initiation 
overhead 

Skewing Partitions the set of iterations into 
groups that are not related by 
dependences (i.e. are not ordered). 

Enhance parallelism 

Node Splitting Breaks a statement into two Reduce dependence cycles 
and thus enable 
transformations. 

Software 
pipelining 

Reorders and partitions the 
executions of operations in a loop into 
groups that are independent from 
each other. 

Enhance instruction level 
parallelism 

Tiling Partitions the set of iterations of a 
multiply nested loop into blocks or 
tiles. 

Enhance locality 

Trace 
scheduling 

Reorder and partition the executions 
of operations in a loop into groups 
that are independent from each other. 

Enhance instruction level 
parallelism 

Unroll and Jam Partitions the set of iterations of a 
multiply nested loop into blocks or 
tiles with reuse of values. 

Enhance locality 

 
Table 2. An incomplete list of transformations for autoparallelization 

 
 
 
 
 



 
 
 
 

Vectorization directive Purpose 
#pragma vector always (ICC) Vectorize the following loop whenever 

dependences allow it, disregarding 
profitability analysis.  

#pragma nosimd  (XLC) 
#pragma novector (ICC) 

Preclude vectorization of the following loop 

__assume_aligned(A, 16); (ICC) 
__alignx(16, A); (XLC) 

The compiler is told to assume that the 
vector (A in the examples) start at 
addresses that are a multiple of a given 
constant (16  in the examples) 

 
Table 3. Vectorization directives for the IBM (XLC) and Intel (ICC) compilers, 

 


